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We discuss the question of the existence of hidden variables within the formalism
of Accardi and Fedullo (1982). In particular, we introduce a new condition at
the level of hidden variable theories that we show to be sufficient in order to
obtain non-Kolmogoro vian probabilities. We compare this condition with Aerts’
(1986) and Czachor’ s (1992) conditions, and propose a new kind of experimental
test aimed at revealing the existence of hidden variables.

INTRODUCTION

The existence of a Kolmogorovian model for probabilities can be

expressed by inequalities which constrict the space of Kolmogorovi an, classi-
cal, probabilities.2 It can be shown that the quantum probabilities violate

these inequalities. The interpretation of this result is less clear. Apparently

disconnected conditions related to the appearance of a non-Kolmogorovian

behavior were proposed by Aerts (1986) and Czachor (1992). We propose

here a sufficient condition to be fulfilled by hidden variable theories in order

to allow them to be non-Kolmogorovian. We discuss the distinction made
by Aerts between hidden state variables and hidden measurement variables,

as well as the criterion of Czachor in the light of our new condition, and

show how it is possible to conciliate their apparently orthogonal points of

view thanks to our new condition. We propose an experimental setup aimed

1 FUND, Free University of Brussels, B-1050 Brussels, Belgium.
2 For instance, the Gutkoski ±Masotto (1974) inequalities express that probabilities which appear
in a Bell-like situation admit a Kolmogorovian representation. They are equivalent to Bell’ s
(1965) inequalities. The work of Gutkoski and Masotto was generalized by Accardi and
Fedullo (1982) and Pitoski (1989). The Accardi ±Fedullo (1982) inequalities express the same
condition as those of Gutkoski and Masotto (1974) in terms of conditional probabilities.
Pitoski’ s (1989) inequalities apply to a Bell-like situation with four different directions for
the polarizers instead of three, as is the case in the original Bell’ s (1965) theorem, and they
lead to the Clauser±Horne (1974) inequalities.
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at measuring eventual memory effects associated with hypothetical hidden

measurement variables.

1. THE ACCARDI ± FEDULLO INEQUALITIES

In 1982, Accardi and Fedullo deduced inequalities which express the

existence of a Kolmogorovian model for conditional probabilities, and showed
that the quantum probabilities do not admit such a model. Let us now present

a summary of their work.

1.1. The Kolmogorovian Model for Three Conditional Probabilities

Let us consider three dichotomic experiment A, B, C with the outcomes
A+, A 2 , B+, B 2 , C 2 , C+ and the conditional probabilities between them.

Usually, they are presented in a matrix of which the element P (X | Y ) represents

the probability of observing the event X when the event Y is realized with

certainty 1. This matrix possesses 36 elements, but P (X 1 / 2 | X 1 / 2 ) 5 1 5 1 2
P (X 2 / 1 | X 1 / 2 ), so that only 24 of them are unknown a priori. The conditional

probabilities are said to admit a Kolmogorovian model iff :

x There exists a probability space V with a measure m 3 on it.

x To each experiment, we can associate a measurable partition of V
(for instance, for A, we have A+, A 2 : A+ ù A 2 5 é , A+ ø A 2 5 V ).

x The conditional probability is given by the Bayes formula: for

instance, P(A+ | B+) 5 m (A+ ù B+)/ m (B+).

The possibility of existence of a Kolmogorovian model is the object of a
theorem of Accardi and Fedullo (1982):

Theorem 1. If the conditional probability is symmetrical, so to say, if

P(X+ | Y+) 5 P(Y+ | X+) and P(X 2 | Y+) 5 P(Y+ | X 2 ), it admits a Kolmogorovian

model iff the three conditional probabilities p, q, r [respectively P (A | B),
P (B | C ), P (C | A )] fulfill the inequalities

| p 1 q 2 1 | # r # 1 2 | p 2 q | (1)

1.2. Violation of the Inequalities by Quantum Probabilities

As was noticed by Accardi and Fedullo (1982), the quantum probability

related to a Stern±Gerlach spin-1/2 measurement violates the inequalities,
as shown by the following example. Let us represent a spin-1/2 state by the

3 This implies among other results that the measure is always positive, that the measure of V
is 1, that the measure of the union of two disjoint sets of V is the sum of their measures, and
that if A , B in V , then m (A ) # m (B).
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associated Bloch vector: (x, y, z) 5 ( ^ s x & , ^ s y & , ^ s z & ), where ^ s i & represents

the average value of the i-Pauli matrice associated to a spin measurement

with the Stern±Gerlach magnet along of the i direction (i: x, y, z). Pure states
are mapped by this transformation onto the unit sphere, so that we can

equivalently represent a pure state by a point of the surface of this sphere.

Let us make the following choice for A, B, C: let us identify A, B, C with

three points belonging to the same great circle on the sphere, A making with

B an angle p /3, C making with A an angle 2 p /3, and with B an angle p /3.

The quantum probability of transition from, let us say, A to B is, according
to standard quantum computations, equal to cos2( u AB/2), where u AB is the

angle taken on the sphere between the points A and B. Then, our choice for

A, B, and C implies that p 5 3/4, q 5 3/4, r 5 1/4, and the Accardi±Fedullo

inequalities, necessary for the existence of a Kolmogorov ian model, are

violated. For instance, | p 1 q 2 1 | 5 1/2 ñ 1/4 5 r, in contradiction with

the required inequality.

2. A SUFFICIENT CONDITION FOR THE VIOLATION OF THE
INEQUALITIES

Apparently, the inequalities of Accardi and Fedullo show an antinomy

between the classical probability and the quantum probability. The fact that

probabilities appear in quantum experiments, for instance, in Stern±Gerlach

experiments, which do not admit a Kolmogorovian model in the sense of

Accardi and Fedullo (take three coplanar directions for the apparatus, the
second and the third of them making an angle of p /3 with the foregoing),

could be considered as an experimental proof that the probabilities which

we observe in nature are not explainable in terms of simple models. This

was sometimes considered as a no-go theorem against the existence of hidden

variable models aimed at simulating quantum probabilities. Unfortunately

for the partisans of this line of thought, such models exist, and they do not
necessarily require the introduction of exotic, non-Kolmogorovian probabili-

ties.4 We shall now give such a counterexample, which makes it possible to

simulate very easily quantum probabilities in the case of a Stern±Gerlach

measurement.

2.1. A Simple Model

Let us assume that the spin state in which we prepare the system is
represented by a point A on the sphere, and that we measure the spin with

the Stern±Gerlach magnet along the direction B. We associate to this situation

4 This possibility was investigated by Pitoski (1982), Accardi (1984), and Gudder (1984).
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a random hidden variable x which is homogeneously spread over the real

interval [0, 1], and impose the following rule. During each measurement

process, the value of x is fixed and its value determines unambiguously the
result of the measurement according to the following requirement: when x ,
cos2( u AB/2), where u AB is the angle taken on the sphere between the points

A and B, the result of the measurement is spin up, otherwise it is spin down.

When we average these results over a large number of experiments,

we recover the standard quantum probability, cos2( u AB/2) for spin up,

sin2( u AB/2) for spin down.

2.2. A Sufficient Condition for Violating the Inequalities

Note that the probability distribution of the hidden variable (homoge-

neous distribution over a real interval) is a very ª braveº and regular one

which fulfills obviously Kolmogorov’ s definition (a measure on a s -algebra).
There is also no problem with the application of Bayes’ law, which we

use in a very natural way when we divide the length of the segment [0,

cos2( u AB/2)[ by the length of the total segment [0, 1]. What is then the

ingredient in our model which allows us to overcome the constraints imposed

by the inequalities? According to us, our model allows us to simulate quantum

(and thus non-Kolmogorovian) probabilities for the following reason, which
we shall from now on call condition B, in order to differentiate from the

Aerts (1986) and Czachor (1992) conditions, which we shall call conditions

A and C, respectively.

Condition B. A hidden variable model fulfills condition B when the

specification of the hidden variable only is not sufficient to predetermine the
result of a measurement, unless we also specify the initial state in which the

system is prepared.

In the simple model of the previous section, for instance, for the same

value of the hidden variable x 5 1/2, the result of a spin measurement with

the Stern±Gerlach magnet along the direction A is spin up (down) according

to the fact that we prepare the initial state respectively in B or C. This is
sufficient in order to violate the inequalities because this type of hidden

variable model is not covered by the assumptions made by Accardi and

Fedullo in their definition of a Kolmogorovian model. Effectively, there is

only one straightforward way to associate a hidden variable model to the

Kolmogorovian model given in the previous section; it is to associate to

every subset X ù Y ù Z . . . of V (where X, Y, Z belong to {A+, A 2 , B+, B 2 ,
C 2 , C+}) a hidden variable which will be realized with probability m (X ù
Y ù Z . . .), and in which the results X, Y, and Z are predetermined with

probability 1. The simple hidden variable model that we presented here cannot

be put in this category of models because in our case we must also specify
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the angle between the conditioned initial state and the final state in order to

know the result of the measurement interaction. This is why we can overcome

the limitations imposed by the inequalities of Accardi and Fedullo: Accardi
and Fedullo implicitly assumed in the hypothesis of their theorem that the

result of a measurement is independent of the conditioning, but fixed once

for all (the measurement is an observation, and the conditioning does not

change the distribution m in V , it just focuses on a subdistribution). Our

simple model of Section 2.1 shows thus that it is possible to simulate any

kind of probabilities with a sufficiently flexible hidden variable model. As
de Broglie said, ª no-go theorems just show a lack of imagination.º

3. COMPARISON OF OUR SUFFICIENT CONDITION FOR THE
VIOLATION OF THE INEQUALITIES WITH AERTS’ AND
CZACHOR’S CONDITIONS

3.1. The Aerts Condition

Aerts (1986) presented a hidden variable model in which the hidden

variable is associated to the measuring apparatus [instead of being associated

with the system under measurement itself, as for instance, in Bohm’ s interpre-

tation (1952)] and proposed this kind of model (which he called ª hidden
measurementº models, to differentiate them from Bohm-like models, which

he called ª hidden stateº models) as the class of models which can explain

the appearance of non-Kolmogorovian probabilities. Before we discuss the

relevance of this assertion, let us give concrete examples of a hidden measure-

ment and a hidden state model.

3.1.1. A Hidden Measurement Model: The Elastic Model

In this model (Aerts et al., 1997), the apparatus itself is characterized

by a hidden state, and this hidden state undergoes fluctuations which are

assumed to be at the origin of quantum stochasticity. The model is defined

as follows. The hidden state of the apparatus is represented by an elastic
membrane which is placed inside the sphere, along the direction of the

Stern±Gerlach magnet (for sure, this is a metaphorical model!). The act of

measurement proceeds as follows: first, the particle, represented by the loca-

tion of its Bloch vector on the sphere, ª fallsº onto the elastic, orthogonally

to it. It is thus located at a distance cos u from the center of the sphere;

afterward the elastic is assumed to break at random somewhere between its
two extremities. This has as effect that the particle is projected on the extremity

of the elastic membrane, which is, relative to the break, on the same side as

the particle. This is assumed to represent the collapse of the particle on

this state, and the observation of the corresponding outcome during the
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measurement. The probability of, let us say, spin up is then given by (1 1
cos u )/2, which is equal to the quantum probability cos2( u /2), as it must.

3.1.2. A Hidden State Model: The Bohm Theory

Bohm’ s (1952) interpretation is, in summary, the following: whenever we

can associate to the equation of evolution of a quantum system a conservation

equation of the form - t r 5 div(7), where r is a positive-definite density of

probability and div(7) is the three-dimensional divergence of a current vector,
we can interpret this density as a distribution of localized material points

moving with the velocity 7/ r . It is thus possible to formulate a hidden variable

theory for the system: it would consist of a spatial distribution of material

points which initially coincides with the quantum distribution (given by r );

these points move with a velocity equal to 7/ r . In virtue of the conservation

equation, the spatial distribution deduced from this evolution coincides then
for all times with the quantum distribution. According to de Broglie, all the

measurements being, in last resort, position measurements, this hidden vari-

able theory is, for practical purposes, equivalent with orthodox quantum

mechanics.

In the case of a single particle passing through a single Stern±Gerlach
apparatus, the situation is particularly simple: when a spin-1/2 particle passes

through the magnet, the wave packet associated with the spin up (down)

component is deviated upward (downward), and, if the magnetic gradient is

strong enough, both components become spatially dissociated. They then

form two distinct spots on a screen placed across their trajectories, as observed

in the original Stern±Gerlach experiment. The Bohm trajectories associated
with this experimental situation, in the case of Gaussian-shaped incoming

wave packets, were presented in Dewndney et al. (1988). For such packets,

the initial state can be put in the form

| C (r, t) & 5 c (r, t) ? (a | 1 & 1 b | 2 & )

where the complex numbers a and b are the amplitudes of the up ( 1 ) and

down ( 2 ) spin states. When the incoming wave packet is Gaussian and that

the magnet is placed along, say, the Z axis, perpendicular to the incoming

velocity v0 along, say, the axis X, the exact solution of the Pauli±SchroÈ dinger

is known (Bohm, 1951). We can then deduce from the equation of conservation
(see, for example, Durt 1996a) the following dynamical equations inside

the magnet:

dx

dt
5 v0 1

k 2

1 1 k 2t 2 t (x 2 v0t)

dy

dt
5

k 2

1 1 k 2t 2 ty
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dz

dt
5

k 2

1 1 k 2t 2 tz

1
H 2 | a | 2 exp 1 b t 2

1 1 k 2t 2

z

2 2 1 | b | 2 exp 1 2 b t 2

1 1 k 2t 2

z

2 2 J
H | a | 2 exp 1 b t 2

1 1 k 2t 2

z

2 2 1 | b | 2 exp 1 2 b t 2

1 1 k 2t 2

z

2 2 J
3 H k 2

1 1 k 2t 2 a t 3 2 2 a t J (2)

where k, a , and b are constants, whose values are fixed by the physical

magnitudes which characterize the problem (intensity and gradient of the

magnetic field, gyromagnetic coupling constant, initial velocity, mass, charge,
Gaussian spread in the position of the incoming particle, and so on). These

equations can be integrated by computer [a graphical result is given in

Dewndney et al. (1988)], and the global dynamics can be studied. This work

confirms the results that we shall now deduce with the help of the simple

following topological argument.
The Bohm trajectories never cross because the Bohmian dynamics is of

first order in time. In other words, positions determine velocities, as it is

obvious in the previous equations. When the potentials and the initial wave

function are separable in Cartesian coordinates, as is the case here, the

dynamics factorizes into three dynamics, one for each component. Then, the

noncrossing property implies that the trajectory associated with a given initial
height z remains ª aboveº all the trajectories associated with initial smaller

values of z. If we combine this property with the fact that the Bohmian

dynamics preserves the quantum spatial statistics in | c (x, y, z) | 2, we obtain

that the ª attractor basinº of the initial positions for which z is larger (smaller)

than z0, where * 1 `
z0 | c (x, y, z) | 2 5 cos2( u /2), is the upper (lower) spot,5 as it

must be. Clearly, here the relevant hidden variable is the height of the initial
position occupied by the particle inside the wave packet. Obviously, this is

a hidden state variable in the sense that it characterizes the hidden state of the

quantum system under measurement itself, and not the measuring apparatus.

5 Exact computations show that between these two extreme behaviors, a fuzzy zone centered
around z0 remains when the screen is placed at finite distance. When initial heights belong
to this zone the impact on the screen will be located somewhere between the two spots. When
the screen is placed further the distance between the spots increases, while the extent of this
fuzzy zone (and thus its probabilistic weight) diminish altogether. This fuzzy zone corresponds
to the intersecting tails of the Gaussian packets associated with the up and down components
of the outgoing packet.
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3.1.3. Comments on Aerts’ Hypothesis

These two examples help to understand the distinction between hidden
measurement variables (Aerts’ case) and hidden state variables (Bohm’ s case).

Note that the initial height plays in Bohm’ s case a role comparable to the

breaking point of the elastic in the elastic model, or to the variable x distributed

at random inside the interval [0, 1] in what we called a simple hidden variable

model in Section 2. Obviously, by reparametrizing the variable z in Bohm’ s

case, or the breaking point of the elastic in Aerts’ case, we arrive at a hidden
variable model which is essentially equivalent to this simple hidden variable

model, provided we neglect ª ideologicalº criteria such as ª position is a

preferred variableº in Bohm’ s case, or ª the hidden variable characterizes the

apparatus only and not the system under measurementº in Aerts’ case.

Note also that in these three models, we must specify the angle u between

the conditioned initial state and the final state in order to know the result of
the measurement process. In the elastic model, this is obvious because for

the same breaking point the particle can fall ª aboveº or ª underº this breaking

point, depending on the value of u . In the Bohmian model, when we rotate

the magnet in the, say, YZ plane, perpendicular to the incoming direction

chosen here to be the axis X (or, equivalently, when we rotate the Bloch
vector of the spin of the incoming particle in the opposite direction), it appears

that, for the same initial position, the particle can move up or down, depending

on the value of u . This means that Condition B is satisfied in the three models

previously studied. In fact, we checked the litterature about hidden variable

models, and Condition B appeared to be fulfilled for all of them, which

shows that this condition is really a minimal one.
It is worth recognizing that this condition is, in essence, a nonclassical

condition. To show this, let us return to statistical mechanics, which is the

classical theory that inspired the promotors of hidden variable theories. In

statistical mechanics, the hidden variables are points of the classical phase

space (seven real coordinates in the simplest cases: three for the impulsion,

three for the position, and one for the time). They are weighted with some
initial distribution (for instance, the Boltzmann distribution), and conserve

this weight when they evolve in the phase space under the influence of

external forces. This type of evolution is, for instance, described by the

Liouville equation. What is typical in such approaches is that the knowledge

of the initial coordinates and the knowledge of the external forces is sufficient

in principle in order to deduce deterministically the subsequent evolution of
the ª hiddenº state, and thus to predict the result of any measurement process

undergone by the particle. If Condition B is fulfilled, this is no longer true,

because in addition to the knowledge of the hidden state (or hidden variable),

we need to specify the quantum state. In Bohm’ s theory, for instance, the
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knowledge of the initial hidden state (the position) and of the external forces

is not sufficient to predict its subsequent evolution. We must also integrate

an extra force, due to the quantum potential, which depends on the quantum
state (the whole wave function). Now, the quantum state c (x, y, z) contains

all the information about the distribution | c (x, y, z) | 2 of hidden states (the

position), so that we could think that the quantum potential expresses the

interaction between different particles of same nature, distributed according

to | c (x, y, z) | 2, but the wave function is still valid in a low-intensity regime,

for instance, with one particle at a time in the Stern±Gerlach device, so that
it is impossible, in the last resort, to find a classical analogy for such a situation.

Now that we have given these concrete examples of a hidden state and

a hidden measurement model, we can discuss Aerts’ hypothesis (Aerts, 1986)

according to which ª the nonclassical probability calculus of quantum mechan-

ics can be interpreted as being the result of a lack of knowledge about the

measurements,º or, in other words, hidden measurement variable models
allow us to simulate quantum (non-Kolmogorovian) probabilities. Let us

formulate this under a form similar to Condition B:

Condition A. A hidden variable model fulfills Condition A when the

hidden variables describe the hidden state of the measuring apparatus only,

and not the hidden state of the system under measurement.

The example provided by Bohm’ s theory, which is a hidden state theory,

shows that this condition (of lack of knowledge about the measurement) is

certainly not a necessary condition for obtaining non-Kolmogorovian proba-

bilities. Nevertheless, in nearly all interesting cases, hidden measurement

models satisfy the sufficient condition for the violation of the inequalities
that we gave in Section 2 (Condition B), as we shall show now.

Let us assume that the probability distribution of the outcomes of a

given experiment is simulated by a hidden measurement model, and that

Condition B is not fulfilled, so that the specification of the hidden variable

only is sufficient to predetermine the result of a measurement, disregarding

the initial state in which the system is prepared. This implies that the distribu-
tion of probability of the different outcomes of the experiment is independent

of the initial state in which the system under measurement is prepared. Clearly,

this ª solipsisticº situation is not an interesting physical situation. Physics

aims at finding permanence beyond impermanence, but a situation in which

we have no control at all (permanence without impermanence) of the results is

rarely interesting. In summary, when a hidden measurement model simulates a
probabilistic behavior in which probabilities depend on the initial state of

the system under measurement, Condition B is fulfilled. We showed that this

condition was sufficient for the violation of the inequalities, so this is also

true for Aerts’ hypothesis, in nearly all cases.
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Note that Condition B is still valid for hidden state models, so it is a

more general condition than Condition A. Let us now discuss the sufficient

condition formulated by Czachor.

3.2. The Czachor Condition

Czachor (1992) analyzed the charge model given in Aerts (1986), a

model essentially equivalent to the elastic model presented here, and arrived
at the following conclusion: ª As long as the concrete Aerts model is con-

cerned, two assumptions are needed: the conditioning by a polarization

and a lack of knowledge about the measurement. It is still unclear for the

author of this paper whether the latter condition is sufficient for the non-

Kolmogorovi ty of the description.º (Czachor 1992).

We clarified the question contained in the last sentence in the previous
subsection. The new element introduced by Czachor is what he elsewhere

calls the ª polarization effect,º or ª the conditioning by a change of state,º

which we express through Condition C:

Condition C. A hidden variable model fulfills Condition C when the
measurement process changes the value of the quantum state and/or of the

hidden variable during the measurement.

This is a generalization, formulated at the level of hidden variable

theories, of the so-called collapse of the wave function. We cannot repeat

here all the analysis made by Czachor, but it is clear that, at least implicitly,
in Czachor’ s view, the knowledge of the hidden variable only is not sufficient

to predetermine the result of a measurement. In all the hidden variable models

of spin measurement studied by him, the knowledge of the angle between

the initial Bloch vector of the spin state and the direction of the Stern±Gerlach

magnet is necessary in order to predetermine the preferred result. Furthermore,

Czachor emphasizes the role played by the measurement process, which in
quantum mechanics can be considered as a conditioning, or preparation of

the initial state of a subsequent measurement. Condition B is slightly more

general than Czachor’ s, in the sense that we emphasize the role of the initial

state, disregarding the technique that we use to prepare this initial state. In

summary, the previous discussions show how Condition B provides a bridge

between Aerts’ and Czachor’ s approaches: Aerts’ condition (hidden measure-
ment) implies ours for nonsolipsistic hidden measurement models, while

Czachor’ s condition implies ours for systems in which the procedure of

preparation of the initial state is equivalent to a measurement process, as is

the case for quantum systems.
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4. HIDDEN STATE VERSUS HIDDEN MEASUREMENT
VARIABLES: AN EXPERIMENTAL ANSWER

4.1. The Distinction Between System and Apparatus

The example of a hidden state variable model concretized by Bohm’ s

theory shows that the concept of hidden measurement variables and the

concept of conditioning are decoupled, and answers positively to the following

question raised by Czachor (1992): ª The question whether one is capable of

constructing the quantum probability model based on the conditioning by a
change of state as the unique non-classical element6 shall be left open in

this paper.º We can thus wonder whether the distinction between hidden

measurement/hidden state variables is relevant. Is it only a distinction of

principle, without any physical relevance? In some sense, this distinction is

very close to the ancient distinction between solipsism and realism, which

we synthesize as follows. Are the results of our observations, sensations, and
so on created by the process of perception, or do they preexist, independently

of our observation? Many philosophers have given a very pragmatic answer

to the debate, of the kind, ª Anyhow, we cannot neglect ourselves and our

mind cannot go outside of our consciousness to check that the sources of

perceptions are independent from us.º This answer is close in some aspects
to the Copenhagen view: ª Why should we talk about the position of a particle

between two successive measurements, because if we do not measure it, we

do not know it?º Does our previous discussion about hidden variables help

to answer the question? Our sufficient condition emphasized the role played

by the initial state and so marks a point in favor of the hidden state approach,

but other constraints exist on hidden variable models than Bell-like inequali-
ties (Gutkoski-Masotto, 1974; Accardi and Fedullo, 1982; Clauser and Horne,

1974; Pitoski, 1989). These are impossibility theorems (Bell, 1966; Kochen

and Specker, 1967; Belinfante, 1973; Brown, 1992), in which the importance

of the role played by the measuring apparatus is emphasized, and made

concrete by the new concept of contextuality. We cannot discuss here the

role played by contextuality in hidden variables, but undoubtedly it marks a
point in favor of the hidden measurement approach. This can also be said

about the concept of nonlocality, which we left aside here for reasons of

simplicity. 7 Note that, although the role of the initial state may be invoked

in order to explain the violation of Accardi’ s inequalities, it may not be

invoked in order to explain the violation of Bell’s inequalities because these

can be violated by one single well-chosen quantum state.

6 So to say without introducing necessarily hidden measurement variables.
7 The interested reader can find in Durt (1997) a discussion of the interrelations which exist
between locality and Kolmogorov’ s axioms, among others, in the framework of Bohm’ s
interpretation.
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In conclusion, the new, nonclassical concept of state dependence that

we developed here and the new, nonclassical concept of apparatus dependence

illustrated by nonlocality and contextuality confirm the pragmatic answer
given to the debate solipsism/realism: we cannot neglect, neither the external

world nor the internal world, which corresponds here to the system under

measurement and to the apparatus. Note that this holistic conclusion is com-

patible with the Copenhagen as well as Bohmian views. It is just one more

confirmation of the good old ª way of the middle.º Rather surprisingly, this

somewhat sterile debate can be expressed in the language of experimenters,
provided we make one more assumption about the nature of hidden variables,

as we shall show in the next section.

4.2. A Crucial Experiment About Hidden State Models

Over 30 years ago, Papaliolos (1967) realized an experiment aimed at
testing the existence of hidden variables described in the Bohm and Bub

(1966) model. When this model, which describes the interaction between a

quantum system and a measuring device, is applied to the case of a spin-

1/2 measurement, it can be shown (Belinfante, 1973) to be essentially8 equiva-

lent to the simple model presented in Section 2.1. Papaliolos assumed that

the Bohm±Bub theory was aimed at describing the passage of a photon
through a polarizing device, and made a supplementary assumption: he con-

sidered (following Bohm and Bub, 1966) that the hidden variables which

hypothetically determine the result of a measurement in the Bohm±Bub

theory do not randomize instantaneously, but remain ª frozenº during a typical

time t R. He let low-intensity light pulses prepared in a given polarization

state pass through two successive, polarizers that were very close to each
other. If the distance between these two polarizers is smaller than the random-

ization time of the hidden variable times the speed of light, new correlations

are predicted by the Bohm ±Bub theory (departure from the Malus law), as

we show in the appendix. Papaliolos did not see any such effect even for

extremely short distances, and considered this negative result as proof of the
nonexistence of Bohm ±Bub-like variables.9

Tutsch (1989) later criticized the relevance of these negative results by

noting that, after all, it could be that the hidden variable is not attached to

the quantum system only, but that its behavior (and thus its randomization)

depends also on the measuring apparatus, in which case the experiment of

8 If we make abstraction of specific features of the Bohm±Bub model as the description of
the collapse process by a nonlinear, continuous-in-t ime dynamics as the explanation of the
randomization of hidden variables in terms of thermal processes, and so on.

9 Of course, the existence of hidden variables with an extremely short, undetectable memory
time is not excluded by experience (Cerofolini, 1982), but the existence of such variables
constitutes an ad hoc hypothesis, totally unfalsifiable!
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Papaliolos is not conclusive. This is the embryo of the idea of hidden measure-

ment variables, and serves perfectly our present purposes. This intuition of

Tutsch is confirmed in the appendix, where we show that, if the hidden states
of both polarizers in Papaliolos’ experiment are described by independent

hidden variables, the statistics of the result is in accordance with the Malus

law. The Papaliolos experiment can thus be considered, provided we accept

the necessity of the existence of a nonnegligibly small memory time for the

hidden variables, not as a crucial experiment which discriminates between

hidden variable theories on one hand and the standard interpretation of quan-
tum mechanics on the other, but rather as a crucial experiment which discrimi-

nates between hidden state theories on one hand and, on the other hand,

the standard interpretation of quantum mechanics and hidden measurement

theories. As we shall show now, it is possible to conceive of an experiment

which discriminates between hidden measurement theories on one hand and,

on the other hand, the standard interpretation of quantum mechanics and
hidden state theories.

4.3. A Crucial Experiment About Hidden Measurement Theories

To conceive this experiment, it is sufficient to reconsider Papaliolos

(1967) experiment, and to commute in it the role played by the system under

measurement (cf. hidden state variables) and the measuring apparatus (cf

hidden measurement variables). We must thus consider the probability of,
for instance, measuring successively two photons with the same polarization

inside the same polarizer. The combined assumption of the existence of

hidden measurement variables and of a memory time for them leads to the

prediction of results which differ from standard predictions (see Appendix).

5. CONCLUSION

The experiments described in the previous section not only help to bring

on the field of experience the old polemics between partisans and detractors of
hidden variable theories. Beyond the technicalities inherent to the theoretical

considerations developed here, they also make it possible to put directly to

nature a very general question, which motivated the title of the present work,

and can be formulated as follows: ª Do measurable correlation times exist

inside the quantum signal?º This kind of question is not so crazy if we

think of the mysterious process of building of an interferometric pattern (for
instance, in a double-slit experiment). All particles seem to arrive at random

on the screen, but, after some time, a structure emerges, the interferometric

pattern. It is natural for a physicist who sees order emerging from chaos to

try to put into evidence the existence of a ª guiding force.º Considered so,
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the existence of memory effects inside the elaboration of the quantum signal

is a possible answer to the naive question, ª How, by Jove, do the particles

know that they must build this pattern?º To be sure, to paraphrase a famous
statement of Laplace, we do not need such hypothesis, but the study of

correlation times appeared to be fruitful in many scientific research fields

(chaotic dynamics, turbulence and so on), and it could be useful in the study

of the temporal creation of a quantum interferometric pattern.

Some ª sulfurousº theories, as the nonergodic interpretation of Buono-

mano (1986) and the shape wave theory of Sheldrake (1985), contain hypothe-
ses which go in the same sense; they assume that perhaps the particles are

in some way informed of the contribution of the previous particles to the

elaboration of the pattern.

Two experiments have attempted to test the possibility of a temporal

irreversibility inside the quantum signal: the Papaliolos experiments, aimed

at testing the relevance of Bohm and Bub’ s theory, and Summhammer’ s
experiments [see Buonomano (1989) for analysis and comments], aimed at

testing the relevance of Buonomano’ s interpretation. The experiments of

Papaliolos with light pulses excluded the possibility of the hidden state

interpretation, and the experiments of Summhammer with neutrons excluded

the possibility of the nonergodic interpretation, but other ways stay open,
among others the possibility of hidden measurement variables, through experi-

ments similar to the one that we discuss in detail in the second part of the

Appendix. An analogue of this experiment is presently in realization at Paris

Nord (Laboratoire de Physique des Lasers, J. Robert, et al.), in an experimental

configuration where a two-level system is concretized by atomic spins. We

are presently working on the treatment of numerical data collected during the
experiment. In the last resort, as always in science, experiments will decide.

APPENDIX. THE NONSTANDARD PREDICTIONS OF HIDDEN
STATE AND HIDDEN MEASUREMENT APPROACHES

A.1. Nonstandard Predictions of Hidden State Approaches

As shown in Belinfante (1973), the Bohm±Bub model in the case of a

quantum system described in a two-dimensional Hilbert space is essentially

equivalent to the simple model that we described in Section 2.1. We shall

use this simple model in order to deduce nonstandard predictions in the case

of the Papaliolos experiment. The results appear to differ slightly from the
Papaliolos’ predictions because the geometry of the distribution of hidden

variables in the Bohm±Bub theory is somewhat more complicated than ours.

Nevertheless, the concepts involved are the same, so that, for reasons of

simplicity, we shall limit ourselves to the simple model. Let us assume that
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a light pulse is moving along an axis X in a conventional reference frame,

and that its state of linear polarization is prepared thanks to a first linear

polarizer whose axis of polarization is vertical (parallel to the direction Z of
this frame). Then we let the pulse pass through two successive linear polariz-

ers. The axis of the first of them makes an angle u with the axis Z inside

the YZ plane, while the axis of the second is vertical. A filtering in linear

polarization is similar to what occurs during a Stern±Gerlach measurement,

except that there the probability was cos2( u /2), while here it is cos2 u , in

accordance with the classical Malus law, which claims that a fraction cos2 u
of the pulses passes through the polarizer. We are here in a low-intensity

regime, so that we can consider that the majority of the nonempty pulses

contains one photon. Let us assume that our simple model is applicable, that

the hidden variable is a property of the pulse itself, and that it remains frozen

during the time of flight between the two last polarizers. Then, if the pulse

passes through the second polarizer, the hidden variable belongs to the interval
[0, cos2 u [. But this condition implies that the pulse will pass through the

third polarizer, too. So the fraction of pulses which pass through the two last

polarizers is cos2 u . Standard quantum mechanics predicts that this fraction

is equal to cos4 u . We also get this result if we assume that our simple model

is applicable and that the hidden variable is a property of the polarizers
themselves (hidden measurement approach), because then the hidden vari-

ables in both polarization processes are no longer the same (even no

longer correlated).

A.2. Nonstandard Predictions of Hidden Measurement Approaches

Let us now consider the following experimental situation. Light pulses
are moving along the X axis in a conventional reference frame, and we

prepare their states of linear polarization using a first linear polarizer whose

axis of polarization is vertical (parallel to the Z direction of this frame). Then

we let the pulses pass through a linear polarizer whose axis makes an angle

u with the Z axis in the YZ plane. Let us assume that the simple model of

Section 2.1 is applicable, that the hidden variable is a property of the polarizer
itself, and that it remains frozen during the time which separates two succes-

sive pulses. Then, if a first pulse passes through the last polarizer, the hidden

variable belongs to the interval [0, cos2 u [. But this condition implies that a

second pulse will pass through this polarizer, too. So the fraction of pairs of

pulses (inside a sufficiently reduced temporal window) which pass through

the last polarizer is cos2 u . Standard quantum mechanics predicts that this
fraction is equal to cos4 u . We also get this result if we assume that our simple

model is applicable and that the hidden variable is a property of the pulses

themselves (hidden state approach), because then the hidden variables in both

polarization processes are no longer the same (even no longer correlated).
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